The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells.

نویسندگان

  • Antonio Fernandez
  • Ian J Huggins
  • Luca Perna
  • David Brafman
  • Desheng Lu
  • Shiyin Yao
  • Terry Gaasterland
  • Dennis A Carson
  • Karl Willert
چکیده

WNT signaling is involved in maintaining stem cells in an undifferentiated state; however, it is often unclear which WNTs and WNT receptors are mediating these activities. Here we examined the role of the WNT receptor FZD7 in maintaining human embryonic stem cells (hESCs) in an undifferentiated and pluripotent state. FZD7 expression is significantly elevated in undifferentiated cells relative to differentiated cell populations, and interfering with its expression or function, either by short hairpin RNA-mediated knockdown or with a fragment antigen binding (Fab) molecule directed against FZD7, disrupts the pluripotent state of hESCs. The FZD7-specific Fab blocks signaling by Wnt3a protein by down-regulating FZD7 protein levels, suggesting that FZD7 transduces Wnt signals to activate Wnt/β-catenin signaling. These results demonstrate that FZD7 encodes a regulator of the pluripotent state and that hESCs require endogenous WNT/β-catenin signaling through FZD7 to maintain an undifferentiated phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Establishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide

Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 4  شماره 

صفحات  -

تاریخ انتشار 2014